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A general mathematical treatment for heat-flux differential scanning calorimetry is given. 
It combines equations derived for heat transfer in the calorimeter cell with an approach to the 
solidification of metal or alloy carried out in this type of instrument. The differences are dis- 
cussed between temperature evolution, kinetics of latent heat and undercooling evolution 
within the sample, and temperature evolution, recorded signal and measured undereooling at 
the monitoring station. 
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Introduction 

Differential scanning calorimetry allows the study of thermal effects which accom- 
pany the solidification of a metal or alloy. The overall thermal effect is equivalent to the 
enthalpy of the process being studied. Owing to the sample temperature lag, however, 
the curve does not correctly represent the considered kinetics. 

The proposed use of a mathematical model for heat transfer in the DSC cell, com- 
bined with an approach to nucleation and crystal growth, is one of the possible ways to 
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reproduce the real kinetics of solidification. The analysis of heat transfer seems to be 
more realistic than that of the idealized Mraw model [1]. 
A solution to the derived set of equations is developed, analogously as done by Saito e t 
al. [2] for Mraw's approach [1], in which only two separate resistances are considered. 

The present outline of heat transfer corresponds to the construction principle applied 
in du Pont instruments, known as heat-flux differential scanning calorimetry. 

The appropriate equations governing the analysed technique, shown schematically 
as a system of thermal resistances and capacities, are developed. The temperature 
within a sample at each instant of the process being studied is the parameter via which 
the above equations are coupled with another set of equations governing the non-sta- 
tionary solidification of the metal or alloy. 
This permits calculation of this temperature and also the temperature at the monitoring 
station. Moreover, both the kinetics of the thermal effect in the sample and the signal 
from the monitoring station can be simulated. 

The current analysis considers the temperature evolution in the heater as the bound- 
ary conditions. Thus, the calculations do not require a knowledge of the recorded signal. 
The signal can be obtained by means of theoretical calculations, and then compared 
with the measured one. 

A temperature gradient in the sample is neglected in the present analysis. 
The purpose of the proposed work is to prove the difference between the kinetics of 

the thermal effect within the sample and the signal monitored during DSC measure- 
ments. 

General considerations 

The proposed analysis considers solidification in the heat-flux differential scanning 
calorimeter and Fig. 1 outlines the Du Pont instrument which employs this principle of 
measurement. The respective calculations have been developed on the basis of the out- 
line. 

Modelling of non-stationary capacity-resistance system for heat-flux DSC 

The DSC cell shown schematically in Fig. 1 was used in theinvestigations carded 
out by Pulluard [3]. 

The scheme of heat transfer in the DSC cell is shown in Fig. 2a, and the system of 
heat resistances and capacities in Fig. 2b. 

The following symbols are used in the sketch: 

Ti = temperature points, (i = 1 ..... 7), 

Ci = heat capacities, J/K, (i = 2 ..... 6); Ci = ci * pi * Vi, 
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Fig. 1 Measurement principle of the Du Pont instrument 
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Fig. 2 Sketch of  calorimeter cell: a) heat transfer in the DSC cell, b) system of heat 
capacities and resistances. 
Arrows denote directions of  heat fluxes for cooling or heating 

ci, pi, Vi = specific heat, J/(g.K), density, g/cm 3, and volume of system 
element, cm 3, respectively, 

txj = effective coefficient of heat transfer, W/K, (J = A, D, M, T), 

1/txA = heat resistance between heater and samples (through atmosphere 
of  cell), 
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1/aD 

1/aM 

HaT 

= heat resistance of part of  disc between heater and measurement  
pointS T2 and Ts, 

= heat resistance between samples and measurement  points 

T2and Ts, 
= heat resistance of  part of  disc between measurement  points 

T2 and Ts, and temperature point T4. 

E l e m e n t a r y  t hermal  ba lance  f o r  c a l o r i m e t e r  cel l  

According to the system of resistances and capacities shown in Fig. 2b, the follow- 
ing set of equations may be written: 

(T1-T2) * aD * A t  + (T3-T2) * aM * At + (7"4-7"2) * ST * At = C2 * (T'z---T2) ( l a )  

(T l -T3)  * aA * At + (T2-T3) * a u  * At = C3 *(T3-T3) ( lb )  

(Tz--T4) * ST * At + (Ts-T4) * ST * At = C4 * (T'4-T4) ( l c )  

(1"4-/'5) * aT * At + (Tt--Ts) * aM * At + (TT-T5) * So * At = C5 * (T'r-T5) ( ld )  

(Ts-Tt)  * aM * At + (TT-Tt) * aA * At = C6 * (T'e--Tt) ( l e )  

where At = time step, s, 

TI = temperature in current time step, ~ (i = 1 ..... 7), 
Ti = temperature in previous time step, ~ (i = 1 ..... 7) 

Rearrangement of  Eqs (1) yields 

T2 = T 2 * (i-A2-B2-E2) + A2 * 7"1 + B2 * T3 + E2* T4 

T3= T3* 

T',= T,* 

T~= Ts* 

T'6= Tt* 

(1-Aa-B3) + A3 * T1 + B3 * T2 

(I-A4-B4) + A4 * T2 + B4 * Ts 

(1-As-Bs-E5) + As * I"4 + B5 * 7"6 + Es * ?'7 

(1-At-B6) + A6 * T5 + B6 * 7"7 

where 

A2 = aD * At~C2 

A3 = aM * At]Ca 

A4 = a r  * At/C4 

As  = a r  * At /Cs 

A6 = aM * At[C6 

(2a) 

(2b) 

(2c) 

(2d) 

(2e) 

(3a) 

(3b) 

(3c) 

(3d) 

(3e) 
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B2 -.~ O~M * At /C2 (3f)  

B3 = tXA * At/C3 (3g) 

B4 =OtT * At/C4 (3h) 

B5 = O~M * At/C5 (3i) 

B6 = 0~A * At/C6 (3j) 

E2 = Ixr * At/C2 (3k) 

E5 = CtD * At/C5 (31) 

and 

7"1 = T7 = To + uo * At (4) 

To = initial temperature of heater, ~ 

u0 = rate of change of heater temperature, deg/s. 

The stability of the solution requires that 

1 -- Ai - B i - Ei  -> 0 ( 5 )  

where i = 2 ..... 6 according to Eqs (3) 
and for i = 3, 4, 6,Ei = 0 

Mathemat ica l  treatment f o r  solidification 

A mathematical treatment for the solidification of a metal or alloy shown below re- 
lates the heat-flux DSC technique to the nucleation and crystal growth approach [4]. 
The sample is considered as one element with no temperature gradient inside, the 
product of solidification is one phase only, and certain parameters of nucleation and 
growth are constant: 

ca * ps * Vs * dTs/dt = ~ cti * Fi * (T3-~i) + q * Vs (6) 

where 

c,, p, = specific heat, J/(g K), and density, g/cm 3, of sample, respectively, 

= environment temperature, 0(2, in/-direction of heat transfer, 

-- heat transfer coefficient, W/(cm2K), 

Fi = surface in/-direction of heat transfer, cm 2, 

V, = volume of smaple, cm 3, 
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t = time, s, 

q = rate of latent heat evolution, W/cm 3. 

The following definition may be inserted into Eq. (6): 

q = L * dV[dt 

where V may be def'med as predicted previously [5-7]: 

V = 1 - exp ( - f 0  

where 

L 

V 

and 

= latent heat, J/cm 3, 

= volume fraction of solidified metal (undimensional), 

(7) 

( 8 )  

= 4/3 * I-I * N * (st u * dt) 3 (9) 

0 

where 

N = number of grains, 

u = linear growth rate of grains, cm/s.  

The number of grains may be calculated by means of the following equation, suggested 
by Oldfield [8]: 

N = * * (AT) 2 

where 

AT 

(10) 

= nucleation coefficient, cm 3, 

= undercooling, K, regarded as the difference between the liquidus 
temperature and the real temperature of a sample. 

(11) 
The crystal growth law [9] has also been used in the above calculations: 

u = Ix * (AT)  ~ 

where 

Ix = growth coefficient, cm/(sK2). 

Results and discussion 

Equations (6-11) were transformed into a differential form, and then combined with 
Eqs (2). The obtained set of equations was solved by means of the iteration method of 
secants, assuming an accuracy of computation ~ < 0.005 K. 
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Some computed temperatures are shown in Fig. 3. 
The temperature under the reference is almost the same as that produced by the 

heater. However, the temperature evolution at the monitoring station differs significant- 
ly from that within the sample. 

Therefore, it seemed of interest to consider the evolution of latent heat at the two 
compared sites. This is shown in Fig. 4. 
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Fig.  3 Temperatures  in the calor imeter  cell: 1 - o f  the heater (Tt, ?'7), 2 - at the monitor ing 
s tat ion (T~) (computed) ,  3 - within the sample (?'3) (computed),  4 - under  the 
re fe rence  (Ts) (computed)  
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Fig.  4 Kinet ics  o f  latent  heat  for sol idif icat ion o f  pure Sn: 1 - according to the temperature  at 
the moni tor ing  station (computer  simulation),  2 - for real solidification within the 

sample  (computer  s imulat ion),  3 - recorded experimentally,  at a cooling rate o f  
2 deg/min  [3] 
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The kinetics shown by curves 1 and 3 are almost identical, which proves that the 
proposed method of calculation is adequate for the heat-flux DSC method of measure- 
ments used in the experiment. However, the simulated kinetics of solidification 
(curve 2) differs significantly from that recorded at the monitoring station (curve 1). 

The difference between the evolutions of temperature within the sample and at the 
monitoring station (curves 2 and 3 in Fig. 3) is also significant. 

The discussed differences (Figs 3 and 4) are illustrated by the evolution of under- 
cooling during solidification (Fig. 5). 
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Fig. 5 Evolution of undercooling within a sample of pure Sn 

The simulated parameter (Fig. 5) changes during the experiment after incubation for 
some time, whereas only one value of undercooling is available from the measurement. 
The assumed undercooling in the incubation period for pure Sn solidification at u0 = 
2 deg/min is 42 K. 

The results of the considerations shown in Figs 3, 4 and 5 prove the importance of 
the simulation of the studied process for a given type of instrument. The need for 
analysis of the kinetics of the process within the sample instead of simple interpretation 
of the signal from the monitoring station is also emphasized. 
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Zusammenfassung ~ Es wird ein allgemeine mathematische Behandlung yon W~rneflu6- 
DSC gegebcn. Es verbindet Gleichungen fiir den W~irmetransport in der Kalorimeterzelle mit 
einer Anngherung tier Verfestigung yon Metall oder Legierung, die in diesem Gcriitetyp 
durchgefiihrt werden. Es werden die Unterschiede zwischen: Tempcraturevolution, Kinetik 
latenter WRrme und Unterkiihlungsevolution innerhalb der Probe und zwischen: Temperature- 
volution, aufgezeichnetes Signal und gemessene Unterkiihlung an der Monitorstation dis- 
kutiert. 
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